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SEMICLASSICAL CALCULATION OF THE DIFFERENTTAL SCATTERTNG
CROSS SECTION WITH CHARGE EXCHANGE:
CESIUM IONS IN CESIUM VAPORT
by John W. Sheldon

Lewis Research Center

SUMMARY

The differential scattering cross section of an ion in its parent gas 1s
calculated for an inverse fourth attractive (polarization) potential. The ef-
fect of charge exchange is included. The ion and atom paths during collision
are computed classically, but the results of quantum mechanical charge exchange
probability calculations are used. Expressions are given for the range of en-
ergy and scattering angle over which this semiclassical approach is valid.

The differential cross section is shown to have a maximum near an apparent
scattering angle of 180°. Approximate expressions are given for the value of
the cross section at the maximum and the scattering angle at which i1t occurs.

Values of the differential cross section for cesium ions in cesium vapor
are obtained by using the results of total charge exchange cross section and
atomic polarizability measurements. These calculations are expected to be
valid for cesium ion-atom collision energies between 0.025 and 1000 electron

volts.
The relation between total cross section, charge exchange cross section,
and diffusion cross section is discussed. The determination of the total cross

section from a scattering chamber type experiment 1s presented and compared
with experiments.

INTRODUCTION
Ion-Atom Resonance Charge Exchange Interaction

An ion following an interatomic path past an atom is subject to the phe-
nomenon of charge transfer as well as scattering due to electronic interaction

lThe information presented hereln was offered as a thesis in partial ful-
fillment of the requirements for the degree of Doctor of Philosophy in Nuclear
Engineering, Texas A & M University, College Station, Texas, 1964.



potentials. If the ion and atom are of identical elements, an outer electron
of the atom will "see" a vacancy in the same energy level it occupies in the
precollision atom. Since the probability of electron transition is inversely
proportional to the difference in energy level (ref. 1), identical levels have
an especially high probability of producing electron transitions. Such transi-
tions are referred to as resonance charge exchange interactions.?

The paths that the ion and atom
follow during an interaction are deter-
mined by the influence of the electric
field of one on the path of the other.
For example, the electric field of the
ion polarizes the atom. The induced
atomic dipole then exerts an attractive
force on the ion. As the distance of
closest approach decreases, higher
order induced field effects become sig-
nificant. The deflection of the ion
and atom paths during collision is re-
ferred to as elastic scattering.

An elastic scattering event with
charge exchange is pictured in fig-
/ - ! ure 1. If we assume the change in mass
/ / of a scattered particle (ion or atom)
/ when an electron is galned or lost has
/ rd a negligible effect on the particle
T kinetic energy, then the collision is
————— 7t experimentally identical to elastic
{8} scattering with an apparent scattering
. angle 180° greater than the actual par-
ticle scattering angle. Since elastic
Figure 1, - lon-neutral elastic scattering event with charge exchange. scattering is predominantly over small
angles, elastic scattering with charge

exchange appears to be predominantly over near-180° angles (refs. 2 and 3).

Importance of Resonance Charge Exchange Phenomena

The large apparent scattering angles that occur when ions pass through
their own vapor provide an efficient mechanism for exchange of kinetic energy
of the charged particles to the gas atoms, that is, to "thermalize" the field
acceierated ions. This phenomenon is of current interest in connection with
gseveral thermal plasma devices. Charge exchange enhances ion neutralization of
electron space charge in thermionic diode energy converters (refs. 4 to 6).
Tons that have undergone charge exchange in the exhaust of an ion rocket engine
have been shown to be detrimental to engine accelerator plates. An electron-

2Russian?to-English translators who are unfamiliar with collision phenom-
ena often translate the Russian word for charge exchange, perezariadka, as
overcharge.
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bombardment ion rocket will always have some nonionized propellant flowing
through the accelerator grid. These neutral atoms exchange charge with the
fast moving ions in the rocket exhaust. The slow ions formed in this exchange
are accelerated back into the accelerator grid where they do sputtering damage
(ref. 7). Charge exchange collisions have been used in molecular beam work to
produce high energy neutral beams (ref. 8).

Previous Work

There appears to have been very little work done on calculating differen-
tial scattering cross sections inecluding elastic scattering and charge ex-
change. A short, qualitative discussion of the subject is given in refer-
ence 1, where it is stated that, in general, the differential scattering cross
section has a large maximum at zero angle (center-of-mass system) and falls
rapidly to a very small value. This small value 1s maintained up to an angle
near 180°, after which, for resonance charge exchange, the cross section in-
creases to a second maximum. The first maximum is attributed to direct elastic
scattering, the second to elastic scattering with charge transfer. Mason and
Vanderslice (ref. 9) propose a method for extending their elastic scattering
cross section calculations to include charge exchange effects. There is, how-
ever, a considerable amount of literature in two closely related areas: clas-
sical calculation of elastic scattering cross section and the determination of
the total charge exchange cross section.

Elastic scattering cross section. - The calculation of differential cross
section due to elastic scattering reduces to the problem of solving the classi-
cal orbital equation (ref. 10) for an assumed interaction potential and then
being able to differentiate the result with respect to impact parameter.

It is convenient, though arbitrary, to consider interatomic potentials to
consist of two types, long and short range potentials. Short range potentials
are repulsive, the result of overlap of the electron clouds. The long range
potentials are attractive, the result of charge induced electrostatic multi-
poles and multipole induced electrostatic multipoles. An lon-atom interaction
potential consisting of the following three terms is used 1n reference 11:

(1) An attractive potential varying as the inverse fourth power of dis-
tance that accounts for the interaction of the induced atomic dipole
with the ion

(2) An attractive potential varying as the inverse sixth power of distance
that accounts for two effects, the interaction of the induced atomic
guadrupole with the ion and the interaction of the induced atomic di-
pole with the induced ionic dipole3

(3) A semihard sphere repulsion potential

SThis dipole~dipole contribution to the 1lnverse sixth power potential is
often called the London dispersion potential.



Terms (1) and (2) are the leading terms in the multipole expansion. Term (3)
is most often represented in the current literature by a potential varying as
the inverse twelfth power of distance (refs. 9, 11, and 12). The choice of the
inverse twelfth power is primarily one of mathematical convenience.

A potential consisting of
thege three terms is sketched
in figure 2. When the relative
kinetic energy of the two col-
liding particles is decreased,
their minimum distance of ap-
proach increases. For suffi-
ciently low energy where the
minimum distance of approach is
of the order of r¥ (fig. 2)
the more accurate three-term
potential may be approximated
by the inverse fourth potential
alone (ref. 9). The details of
particle paths followed during
a polarization interaction have
been discussed in references
13 and 14; however, neither
reference presents an expres-
sion for the differential cross
Figure 2, - Interatomic potential, section per se.

Three-term potential

Vir)

//lnverse fourth potential

Total charge exchange cross section. - Reviews of total charge exchange
cross section data are available in standard texts (refs. 1, 3, 15, and 16).
A comprehensive survey of charge exchange data was published in tabular form
by Stanford University in January 1961 (ref. 17). There are no date reported
below 2 electron volts.

Most of the work with cesium ions in cesium vapor, which is of special in-
terest here, has become available since January 1961 (refs. 18 to 23). The
lowest collision energy investigated is 6 electron volts (ref. 23).

The total charge exchange cross section theory may be classified by the
relative velocity range over which it is applicable. The relative velocity may
be considered in two ranges: high, where the relative velocity is greater than
the velocity of the orbiting electron to be exchanged and low, where the rela-
tive velocity is less than the velocity of the orbiting electron to be ex-
changed. The work presented in this report is only applicable to the low
range.

There are several theoretical treatments of low velocity charge exchange
collisions. These are, with some ambiguity,4 designated in the literature as
the impact parameter method, the adiabatic method, and the perturbed stationary

4Tn reference 24 the approach is referred to as the adiabatic method; in
reference 25 it is called the impact parameter method; the methods used in
these two sources are identical.

4
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state method. Actually all of these methods require the assumption of an adia-
batic collision. Their main difference is the type of expansion used for the
total wave function of the colliding system. Mott (ref. 26) and Demkov

(ref. 27) expand the system wave function in terms of the atomic wave func-
tions. The method of Firsov (ref. 24) and Holstein (ref. 25)° expands the
system wave function in terms of symmetric and antisymmetric combinations of
the atomic wave functions. The perturbed stationary state method introduced by
Massey and Smith (ref. 28) has been presented in detail by Bates, et al.

(ref. 29) who show its relation to Mott's method. Dalgarno and McDowell

(ref. 30) apply the perturbed stationary state method to the calculation of
total resonant charge transfer cross sections of negative hydrogen ions in
atomic hydrogen. Iovitsu and Tonescu-Pallas (ref. 31) apply it to the resonant
charge exchange of hydrogen-like atoms and ions. In perturbed stationary state
calculations, the total system wave functions are expanded in terms of the mo-
lecular ion wave functions. Demkov (ref. 27) contends that unless the molecu-
lar ion wave functions are accurately known, the complex calculations that this
treatment requires are not justified.

Present Calculation

This report combines calculations of classical low velocity elastic
scattering with the quantum mechanical calculation of charge exchange probabil-
ity during a low velocity collision to obtain an expression for the low veloc-
ity differential scattering cross sections with charge exchange. Experimen-
tally determined total charge exchange cross sections (ref. 19) and atomic po-
larizability (ref. 32) are used in this expression to back-calculate the cesium
ion-atom differential charge exchange cross sections.

The experiment of reference 19 consisted of focusing an accelerated ion
beam into a charge exchange chamber. This chamber contained neutral cesium
atoms (at a pressure of 0.0l to 0.1 mm of Hg) whose number density was deter-
mined by a surface ionization detector. The slow lons formed in the chamber by
charge exchange were collected on parallel plates in the charge exchange cham-
ber. The plates were at sufficiently high negative potential to collect the
charge exchanged ions, but sufficiently low potential to avoid perturbing the
ion beam path. This procedure restricted the experiment to beam energies above
50 electron volts. The measurement of ion beam current entering the charge ex-
change chamber, the current collected on the negative plates, the neutral ce-
sium number density, and the dimensions of the apparatus allowed determination
of the energy dependent charge exchange cross section for the energy range 50
to 4000 electron volts. These cross section data were compared with the theory
of reference 27 in order to obtain values of exchange parameters for cesium.
These same parameters appear in the differential charge exchange cross section
theory.

The expression for differential scattering cross section is integrated to
obtain both total and diffusion cross sections. The use of these results in

SHolstein (ref. 25), who published in 1952, was apparently unaware of
Firsov's identical approach (ref. 24) to the problem published in Russian a
year earlier.



the interpretation of low velocity scattering experiments is discussed. Inter-
pretation of such experiments is complicated by the sizable portion of colli-
sion velocity associated with the random motion of the gas in the scattering

chamber.

RESONANCE CHARGE EXCHANGE PROBABILITY

A frequently referenced theory of charge exchange probability is that pre-

sented in reference 27. This theory will be outlined here, as it allows deter-
mination of the dependence of

charge exchange probability on

y - impact parameter, a result that
4 'H“”m} Atom will be needed in later sec-
Rpp—— = = + Nucleus tions.

In this treatment, an atom
is considered, denoted by the
subscript a, to move past an
ion, denoted by the sub-
script 1. The motion of the
/ atom is along a straight line
path in the x,y-plane of fig-
ure 3, with velocity u and
closest distance of approach
Rp. The ion is fixed at the
origin of this coordinate sys-

y tem. The atom is considered as
Figure 3. - Coordinate system for impact parameter treatment of resonance the combination of an electron
charge exchange. s .
and a positive nucleus or ion
core. The ion at the origin is
a positive nucleus of identical structure. It should be noted that the impact
parameter is equal to the closest distance of approach for the special case of
a straight line path. If U;(r) and Uy(r') are the potential energies of the
electron in the field of the ion and atom, respectively, and V¥ 1is the time
dependent wave function for the ion-atom system, the Schrddinger equation for
the electron in this system 1is

+ Nucleus

S

e ————
~

2
- ?E;-vz + Us(r) + Ug(r")|V = i g% (1)

where % is Planck's constant, h, divided by 2=, V2 is the Laplacian oper-
ator, mg, 1s the electron mass, and t 1s the time coordinate, which ranges

from -« before the collision through the condition R =Ry at t =0 to +»

after the collision.

The total wave function must have the asymptotic form

2
i ifn et
"5 T TH\P0T T2
Y(t = —0) = Yg(r')e e (2)
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where wo(r’) is the ground-state wave function for the electron associated

Lo ux
with the atom prior to the collision; e represents the electron motion
with the incoming atom as an incoming (left running) plane wave, and

2
i m-1
'%<E0+T

)t
e is the phase factor that contains the internal energy of the
atomic system EO plus the kinetic energy meu2/2.

In order to obtain VY(t) at times later than -« out to +o it is expanded

in terms of ¢ (r), the wave functions for the electron in the field of the
ion. Hence,

[=3]

-i et .
V() =Zan(t)cpn(r)e i (3)

n=0
with o, (r) satisfying

ﬁz 2
[— Ee-v + Ul(r)]q)n(r) = Gn(Pn(r) (4:)

The probability P, of the electron being associated with the original ionic
nucleus in the nth state at t = 4o is then

2
P, = /\lr(+w)cp§(r)dr (5)
all space

where dt is the differential volume element. Using equation (3) and orthogo-
nality and normalization of o (r) gives

2
P, = Ian(+m)] (8)
Substituting equation (3) into (1) and operating through with fcpl’;l(r)d'r

(superscript * indicates the complex conjugate) give the set of coupled si-
multaneous differential equations

i

dam(t) = €t _

i —gg— =" P (r)Ug(x "W (r,t)dr (7)
all space

which may be integrated to give the coupled integral equations

iﬁ[am(*’") - am(-°°)] = / / <P§§1(r)UA(r')\If(r,t)e_E “n® 4r at (8)
-0 al

1 space



Using equation (6) and the initial condition aj(-=) = 0 yields
2

o i
/ PE(r)Up(x " )W (x,t)e? “n” dt dt (9)
a

11 space

a]
X

-00

Determination of P, to a first-order approximation can be accomplished by
setting 5

. . m_u
1 1 e
~ Dol ‘E(‘EO+T>t

V¥(r,t) = ¥(r,=) = wo(r')e e (10)

This approximation should be good for

nof -

P, <

since it assumes that the total system wave function undergoes very little
change during the collision. Now for charge transfer to the ground state where
both nuclel are the same element (EO - €y = 0), we have

@ [ o

i i“e
¥ (x)Up(r Io(r')e B arle ™ 2 & (11)

] I

-0 all space |

In order to simplify integration, further approximations are made in refer-
ence 27, namely,

M UX
-1

e P 22 (12)
i meu2

FTz b

e =~ 1 (13)

Since the remainder of the integral vanishes for large distance of separa-
tion R, we are only concerned with the validity of the preceding approxima-
tions within some interaction distance D and the corresponding time required
to pass through this region T, (T = 2D/u). Hence, approximations (12) and (13)
are equivalent and require

.

meuD

h

<< 1

Using approximations (12) and (13) reduces the expression for charge exchange
probability to

8
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Fo = ;ﬁl- / /@é(r)UA(r')Wo(r')dT at (14)
=00 all space

The indicated integration can be carried out for normalized hydrogen-like wave
functions

Z
o (r) = 2 e @ (15)
0 ﬂaS

where 2z and a are the effective charge and effective radius, respectively,
giving (see appendix)

2 -
2
- [&Z 25-2p
Py = (hu) 2nzp(p + 2)% (16)
where p = ZRO/a. Following reference 27, we can use the approximate expres-
sion for large op

1
=K
5 K1 KR
—e 20 (17)

P =

where Kl and K2 are constants dependent on the ion and atom atomic struc-

ture and e is the kinetic energy of the atom relative to the ion. Hence, the
closest approach of the atom to the ilon for which the exchange probability is
1/2, RO cs can be written

2

1/2
Ro’c = (%) / (A - B 1ln €) (18)

where A and B are conveniently chosen new constants.

Impact parameter calculation of ref, 27 eq. (17) The significance of RO e 1s
e evident if we look at the sketch
7 of equation (17) in figure 4. The
7 exchange probability obtained by
e Firsov (ref. 24) and Holstein

(ref. 25) is also shown in this
figure. Their expression is valid
at small values of Ry (where egq.
(17) would give the absurd result
i P, > 1), and their work indicates
that the average value of Py for
Ry < Ry is 1/2; therefore, the
expression

y—
.
=]

|
|

Charge exchange probability, Po

(=]

1
R0,c
Minimum atomic separation during collision, Rq

Figure 4, - Resonance charge exchange probability,
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(19)

will be used, where R; . 1s given by equation (18).

SEMICLASSICAL, DIFFERENTIAL, SCATTERING CROSS SECTION
Procedure

The suggestion of Mason and Vanderslice (ref. 9) can be followed to com-

pute the differential charge exchange cross section oyu(e,0) (6 is the appar-
ent scattering angle in the center-

of-mass system; see fig. 5) by treat-

] apparent scattering angle

e particle scattering angle ing the particle orbit classically

u=2v relative velocity and the charge exchange probability

€ = 12 mu? relative energy P, by the impact parameter method.
Then

-]

o,(e,0) = Pyo(e,n - 6) (20)

where o(e,6) is the classical elas-
tic scattering cross section and 6
is the apparent scattering angle in
the center-of-mass system. The ac-
tual elastic scattering cross section

-

Figure 5, - Scattering of identical particles in center-of-mass system, Oe( €, 6) is then
oe(e,e) = (1 - Po)o(e,e) (21)

The change in angular dependence from 6 to = - 6 1is required in equation
(20) since the particle identities as ion and atom reverse during the charge
exchange interaction. For example, if charge transfer occurs during O° elastic
scattering, the interaction will be experimentally indistinguishable from 180°
elastic scattering. The angle through which the actual particles are scattered
will be referred to as the particle scattering angle, and the angle through
which the charge is scattered will be called the apparent scattering angle.
(When a distinction between apparent and particle scattering angle is required
in notation a prime will be used to denote the particle scattering angle.)
Hence, in the preceding example the particle scattering angle is 0° and the ap-

parent scattering angle is 180°.

Classical Elastic Scattering by Polarization Potential

The elastic scattering cross section is given classically by

b db (22)

o(e,0) = - sin 6 d@

10
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where b is the impact parameter that produces a scattering angle 6 in the
center-of-mass system (fig. 5). We now wish to determine ©b(6). This requires
solving a two-particle scattering problem in the center-of-mass system, where
the two particles with masses my and m, are separated by a distance r,
have a mutual interaction potential U(r), and are moving with relative veloc-
ity wu. It is well known (ref. 10) that this problem can be reduced to the
equivalent problem of the scattering of a single hypothetical particle with
mym

initial velocity u and reduced mass p<‘ = o T ma
1 2

) about a fixed scattering

center. The distance between the hypothetical particle and the scattering cen-
ter in the single-particle problem corresponds to the distance between parti-
cles in the two-particle problem.

The conservation of energy and momentum for the one-particle problem may
be written as )

2

ET - % H(J':,Z + I.Zcb?.) + U(I‘) = % uu® = const (25&)

and
1= pr2¢ = pub = const

respectively, where r and ¢ are the polar coordinates of the particle with
the origin at the scattering center and ¢ = 0 at r =~ prior to the scat-
tering event. The dots denote differentiation with respect to time. These two
equations may be combined to give the following differential equation for the
motion of the single particle about the scattering center:

ar 1’ pZ _2u(x)

dep = Db 1- r2 -~ € (24)
Here it was noted that if m, = m, = m, then is l €, where € is E mu2

1 =0y =W, B 7 € 5 mur.

This equation may be integrated from ¢ =0 at r =« <to the turning
point at ¢y, ry, where ry 1is the closest approach of the particle to the

scattering center. At the point of closest approach dr/d@ = 0; therefore, ro
is one of the roots of the equation

rz‘/l-l.é—ﬂﬁ)-=o (25)

r €

Furthermore, we can rearrange the energy equation
1l .2 1
Ep=3 ur® +V (r) (23b)
1 be
where the fictitious potential V'(r) is defined as ze* U(r). Now we
r

11



have an equivalent cne-dimensional problem in which the turning point can be
seen graphically as the point where # =0 and E = V'.

A sketch of tle fictitious po-

Spiralin
- P ’ tential for the polarization inter-
~ Orbiting action (fig. 6) shows that r, must
vl e | 9 be the largest root of equation )
! By = Vzpu (25); a smaller root would represent
B ! a trapped particle rather than one
To coming in from infinity. The spe-
Distance from scattering center, r cial cases of rO = rl and r. = 0
being the largest real roots will be
discussed later in this section.
. When only polarization is con-
sidered in the potential function
. I . N - v
Figure 6, - Fictitious potential for polarization interaction, U(I‘) = - = (26)
r
eZo, A . .
where V = 5 (ref. 32), the largest real root of equation (25) is
v
2
ry = 2 €b (27a)
8V
1 - 1 - —
€b
and the smaller root (excluding zero) ry is
v
2
b
I"l = 2 < (28)
8V
1+ 1 - -z
€b

Rearrangement of (27a) gives a relation for the ratio of impact parameter
to the distance of closest approach:

2
a1+ & (27b)
r er
0 0
By defining
o)
y =4 (29)

and

1z



1- 41 - 2
ry eb4
k === (30)
0 1+ 1l - §ZZ
€b

the integral of equation (24),

o
b ar
Py = (31)
2‘/ b2 2u(r)
r 1l - = -
T c
[00]

1
6 = 2r.b Y= dy - @ (32)
: ‘/;; ,[ Vi - 3 - x%2)

where the relation between 6 and ¢
obtained from figure 7, 6 = 29y = W,
is used.

can be written

. The integration in equation (32)
) can be expressed in terms of a com-
o plete elliptic integral of the first

kind K(k) by

6 = 2rib ‘/% K(k) - = (33)

which can be put into the form

6 =2 V1+x°KE) -n (34

Scattering center—

Figure 7. - Relation between scattering angles and angular coordinate.

by algebraic manipulation of equations (27), (28), (30), and (31). Values of
K(k) are tabulated in reference 33.
In order to obtain the cross section, an expression for db/d6 is re-
guired. This is obtained by noting that
db _ db dk (35)

13



Performing these differentiations on equations (30) and (34) and inserting them
into equation (22) finally yield

1/2

2 2
,6)si 9=‘/§l_l_ (1 - k)71 + k7) >
U(E sin c 4 k5 [(l - kz)K(k) + (]_ + kz)B<k)] ( )

where the elliptic integral B(k) is also tabulated in reference 33. The angu-
lar dependence of the right side of equation (36) is contained in the param-
eter k via equation (34).

For small scattering angles {less than 0.25 radian) equation (34) may be
approximated by

o ~ O 2 (37)

[aV]

and higher have been neglected when compared to
unity. To this same approximation, equa-
tion (36) becomes

where terms of the order k

100
. 1 67tV
ole,f)sin 6 =~ —_— 38
(e,0) —TSQBZVE (38)

The pair of parametric equations
(34) and (36) gives the classical differ-
ential elastic scattering cross section
due to a polarization potential in terms
of the parameter k. The angular depen-
dence of the "universal" cross section is
presented in figure 8, where the cross
section is in units of 1/2V7e. This
separation of angular and energy depen-
dence is characteristic of a classical
treatment. The functions 6(k) and

10

A -1/2
&)

Scattering cross section, ofg, e)sin e(

.
(=]
—

!
= | ( :
i | o(c,0)sin 0 are presented in tables
— | 2V
! l € k
'anﬁ_L 1 2 3w I and IT, respectively.

Scattering angle, o, radians
Figure 8, - Classical differential scattering cross A brief description of the classical
section for polarization potential, particle orbits based on the work in ref-
erences 13, 14, and 34 follows. The

various types of encounters are sketched in figure 9. As the impact parameter
decreases below b, the incident particle is scattered through more than 180°.
Then the interaction cannot be distinguished from one that scattered the inci-
dent particle through an angle -6 nor can it be distinguished from scattering
through any angle 2nn - 6, where n 1is any integer. '

14



TABIE T. - CLASSTCAT, SCATTERING ANGLE 6(k) FOR POLARIZATION POTENTTAL
x| 0 1 2 3 4 5 6 7 8 9
ofo 0.2354x10~1| 0.4725x10-1| 0.7117x10-1| 0.9509%10-1 |0.1190|0.1432 |0.1660 |0.1917| 0. 2160
1(0.2406]0.2655 0.2903 0.3154 0.3404 0.3658(0.39110.4167 |0.4425|0.4683
2(0.4944{0.5208 0.5471 0.5740 0.6009 0.627810.6552|0.6826 |0.7105|0.7385
3(0.7667|0.7952 0.8240 0.8531 0.8824 0.9121(0.9420(0.9722 {1.0027|1.0335
4]1.0648{1.0964 1.1283 1.1608 1.1936 1.22691.2605|1.2947 |1.3293|1.3644
5[1.4000|1.4360 1.4729 1.5103 1.5481 1.5867|1.6259|1.6652 |1.7066|1.7504
6l1.7906|1.83386 1.8778 1.9229 1.9689 2.01612.0644{2.1139 |2.1646/2.2168
7|2.2704}2.3255 2.3822 2.4408 2.5015 2.5640|2.6288|2.6963 |2.7661|2.8392
8|2.9151|2.9946 3.0782 3.1662 3.2591 3.3572|3.4618|3.5736 |3.6938|3.8239
913.9658(4.1218 4.4912 4.4912 4,7163 4.9809|5.3035|5.7175|6.2977| 7.2850
) =7 -1/2
TABLE II. - CLASSICAL SCATTERING CROSS SECTION [o(e,8)sin e(V—E- N FOR POLARTZATION FOTENTIAL
K2 0 1 2 3 4 5 6 7 8 9
.0 @ 104,65 36.478 19.572 12,528 8.8320 6.6177 5.1714 4.1667 3.4368
.112.8870 2.4613 2.1243 1.8519 1.6285 1.4428 1.2862 1.1531 1.0387 0.9398
.210.8536 0.7779 0.7111 0.6518 0.5990 0.5517 0.5091 0.4707 0.4358 0.4042
.3|0.3754 0.3491 0.3250 0.3028 0.2824 0.2637 0.2463 0.2302 0.2153 0.2015
.4|0.1888 0.1767 0.1655 0.1551 0.1453 0.1362 0.1277 0.1197 0.1122 0.1051
5|0 9851¢10-1| 0. 92209x10-1| 0. B624x10-1]0. 8093x10~1 [0, 7575x10~1 | 0. 708 7% 10-1 | 0. 6627x10-2 |0, 6193x10-1 [0.5783x10-1 | 0.5397x10-1
610.5033x10-1] 0.4690x10-}| 0. 4366x10-1| 0. £061x10-L |0.3772x10-1 | 0. 3500x10~1 | 0. 3243%x10-1 | 0. 3002x10-1 10,2773x10-1 0. 2559x10-1
1710, 2356%10-1| 0. 2165%10-1 |0.1986%x10-1|0.1818x10-1 |0.1659x10-1]0.1510x10-1 |0.1371x10~1|0.1240x10-1{0.1129x10-3 [0.1005%10-1
“8|0.8983x10-2| 0. 7996x10-2 | 0. 7078x10~2 | 0. 6229x10~2 |0.5444x10"2 | 0. 2723x 1072 | 0. 2062x10™2 | 0. 3459x 10720, 2911x1072 |0, 2416x10"
T9|0. 1973 10-2{ 0. 1579%10-2|0.1233%10~2 | 0. 9335x10-3 |0. 6781103 | 0. 4658x10-3 | 0. 2949x10-3 0. 1641x10-3 0. 7217x10-4 {0, 1786x10"%
The value of the impact parameter b, i1s obtained by-rearranging equa-
tion (30) to obtain
> 2V (k% + 1
e = ¢ (V——= (39)
€ k
and inserting the solution k; to the transcendental equation
2
\/1 + k2 K(k,) = = (40)
Numerical solution yields kjt = 0.9096. Then
2V
b2 = 2‘/—-€ 1.0046 (41)

If b is decreased below by, and the condition 8V/eb4 =1 is ap-

by
by
ba—\\\\\
= -2

A

Lb4
% \:\ Sphere of charge exchange probability = 0,5
\\\ Sphere of orbiting

*-Sphere of spiraling

By > by > br> by> b > by
Figure 9, - Types of encounters in polarization interaction,

proached, the incident
particle begins to orbit
the scattering center.
This can be seen on exam-
ination of equation (30).
If 8V/b%e = 1, then

k = 1, and since K(1) be-
comes infinite, 6 also
becomes infinite. Further-
more, we see from equa-
tions (27) and (28) that
rg = ry When 8V/ote = 1.
This condition is shown in
the sketch of fictitious
potential (fig. 6).
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For still smaller b corresponding to 8V/b4e > 1, it can be seen from
equations (27) and (28) that ry and rq become imaginary; hence, the largest
real root of equation (25) is zero (see fig. 6). Now the incident particl
spirals toward the scattering center until short range repulsive potentials
control the interaction.® The definition of spiraling cross section oy 1s

then

2
oy = bg (42)
where
SIP | (43)
ebs

The cross section for multiple circuits of the scattering center during scat-
tering d(@ > n) is then given by the annular area between impact parameters

bﬂ and bS:

o(e > ) = ﬂ(bﬁ - bg) ~ 04(1.0046 - 1) = 0.0046 o (44)

Charge Exchange and Elastic Scatbering Differential Cross Sections

The results of the sections RESONANCE CHARGE EXCHANGE PROBABILITY and
SEMICLASSICAL DIFFERENTIAL SCATTERING CROSS SECTION can now be combined in the
manner indicated by

o,(e,0) = Pyo(e,n - 6) (20)

and
ce(e,e) = (1 - Po)o(e,e) (21)

to obtain the differential charge exchange cross section o,(e€,9) and the dif-
ferential elastic scattering cross section, respectively. In the section’
RESONANCE CHARGE EXCHANGE PROBABILITY, it was shown that

1
PO=§ r<ro’c
(19)

Following the methods of references 25 and 27, the effect of the collision
orbit curvature due to polarization on the charge exchange probability may be
be ignored, except through its reduction in the distance of closest approach

6Spiraling may also be considered as a mechanism by which an ion and an
atom are brought sufficiently close together for there to be a high probability
of diatomic molecular ion formation (ref. 35).
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for a given impact parameter. By using equation (27b) to account for this re-
duction, equation (19) becomes

1/2
1 2V
Po=§' bSrO,Cl+ Z =bc
erh,c
(45)
1/2
2V
Py =0 b>rg |\l +—7 = b,
O,c
where T, is given by equation (18). The dependence of o(e,0) on scatter-

ing angle’is available from the parametric equations (34) and (36). TFor a
given scattering angle the corresponding impact parameter is obtained from
equations (34) and (39): P, is available from equation (45) for this impact

parameter. Therefore, for a given scattering angle, both o(e,8) and Py can
be determined and inserted in equations (20) and (21).

The differential charge exchange cross section and the differential elas-

2400 17 10, 000: .

|| 8000 é}
6000 —
2200 T
4000
2000
1800 Sk 2000
' <
‘ & 1000 ]
1600 | - R At
o 7
Sk M0CG |- T :_ 600 — 1" lon-atom / //
- . lative
S ! 2 400 L re 7‘/
8 : energy,
B | ! o | LA
g S o
=
800 £ 100 ‘,/.w//i //
;':’ 80 //’/ P }// /
40/ // // /
400 L1 // .50 /
] //////
0,{0. 025, e)sin o 0,(0.025, elsin e/ 20 /,/ %
\\\ L .m/ /
0 .4 .8 L2 1.6 20 24 28 ™ 2.5 2.6 2.7 2.8 29 3.0 31 7
Apparent scattering angle, o, radians Apparent scattering angle, radians
Figure 10. - Differential elastic scattering cross section and Figure 11, - Differential charge exchange cross section for
differential charge exchange cross section for cesium ions cesium fons in cesium vapor,
in cesium vapor. Relative energy of collision, 0.025 electron
volt.
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tic scattering cross section were calculated following this procedure and are
presented in figure 10 for a cesium ion-atom relative energy of 0.025 electron
volt. The following constants were used: A = 27.2 A, B =1.55 & (ref. 19)
and a = 52.3 &3 (ref. 36). The differential charge exchange cross section is
shown in figure 11 for relative energies of 0.025, 0.05, 0.10, 0.50 and 1.00
electron volt. The scale of figure 11 is chosen to illustrate the effect of
collision energy on the magnitude of the cross section maximums and cutoff
angle 6, (apparent scattering angle).

An approximate expression indicating the energy dependence of ox(e,ec),

the maximum value of the differential charge exchange cross section, can be ob-
tained if we note that eé, the particle scatiering angle, near the maximum is

small.

Combining equations (30) and (37), we have

Y - av_
€.b4: 3 €b4: 3 v
3 c 7T c N 3 (46)

where terms of the order of ZV/ebg and smaller have been neglected when com-
pared to unity. Writing equation (27b) to the same degree of approximation
gives

be = re (47)

so that, by combining equation (18) with the approximate expressions (46) and
(47), we obtain

o' = 37y . (482)
€ 8e(A -Bi1n €)

or

0, = - 64 = |1 - 51y - (48b)
8e(A - B 1n ¢)

This is the particle scattering angle corresponding to the largest impact pa-
rameter b, for which charge exchange can occur. Substituting equation (48)
into the small 6 approximation of o(e,8), equation (38), and using the re-
sult in equation (20) give

. 2 € 6
o.(€,6.)sin 6, ~ — = (A - B 1n ¢) (49)
X\ =2¥e C 24V

without making any further approximations.
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TOTAL SCATTERING CROSS SECTION

The total scattering cross section with charge exchange due to a polariza-
tion potential could be obtained by determining the area under a curve of the
type shown in figure 10. Since the differential scattering cross section in-
creases without limit as 6 approaches zero the area must be determined as a
function of 6, an arbitrarily chosen lower 1limit to the scattering angle. 1In
practice, 0, 1is determined by the minimws detectable scattering angle in a
scattering chamber apparatus. The total scattering cross section observed in
this apparatus would be

7 -0
op(e,0y,) = 2 o.(€,0)sin 6 a0 + 2x ox(e,0)sin 6 46 (50)
6m em

and if we require 6 < M

7 bm
op(e,0,) = 2n / o(e,0)sin 6 A6 =~ 2x / b db = :rbr?l (51)

O 0

Using equation (39) gives

2
1
GT(e,Gm) = X '/E?\_f_ km_'km; (52)

Since 65 is always small, equation (34) again may be approximated by equa-
tion (37). Combining equations (37) and (52) gives

3aV
OT(e}em) - zeem (53)

It must be remembered that €, 1is_in the center-of-mass system but corresponds
to the minimum detectable angle 9% in the laboratory system. The conversion
from the center-of-mass system to the laboratory system is given by (ref. 10)

O

-2

QIIE (54)

for particles of identical mass.

DIFFUSION CROSS SECTION
The quantity most often needed for charge transport calculations is the

diffusion cross section og(e), sometimes called the momentum transfer cross
section, which is defined by
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7
ag(e) = 2x f 0.(€,0)(1 - cos 6)sin 6 a6
0

T
+ 2x / o, (€,6)(1 - cos 6)sin 6 4o (55)
0

Noting that 1 - Py =1/2 for 6' < 6 < =, the first integral in equa-
tion (55) becomes

7 e/
C
2n / 0o(€,0)(1 - cos 8)sin 6 a6 = 2x f o(e,0)(1 - cos 6)sin 6 46
0 0

I
+ 2x f % o(e,8)(1 - cos 6)sin 6 Ao (56)
6)

C

The second integral in equation (55) can likewise be written

Tt T
25 f 0, (e,0)(1 -cos 6)sin 6 df == f o(e,8)(1+cos 6)sin 6 a6 (57)
0 o'
c

Adding equations (56) and (57) now gives

T 0
ogle) = 2=n f o(e,0)sin 6 d8 + 2n f o{e,0)(1 - cos 6)sin 6 48 (58)
6! 0
c
The first integral on the right is Jjust GT(e,Gé) given by equation (53).
Using the small angle approximation for o(e,f) given by equation (38) and the
further small angle approximation

92
1-cos 6= (59)

the second term on the right in equation (58) becomes

61
c
n / [exve .
8 €
0
which can be integrated to yield

7 6nV 3 /2
7 Yo (Qé)/

Now equation (58) gives
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ale) = x T & @ i b 0] e

so0 the diffusion cross section may be approximated by
og(e) = op(e,6%) (81)
It is also worth noting that
Tt T
o.(e) = 2n ‘{ o (e,6)sin 6 a6 = x f o(e,0)sin 6 ds (62)

9!
C

Comparison with equation (58) gives the well-known expression (ref. 30)
ogle) = 20,(¢) (63)

to the same degree of approximation as equation (61).

SCATTERTING CHAMBER EXPERIMENTS
Theory

Consider the passage of an ion beam through a chamber containing its own
vapor (fig. 12).

vj velocity of fon in beam
Vg thermal velocity of scattering gas

u relative velocity of collision

lon source
.~ Electrostatic focusing and acceleration
— -
e = T o

—T ~dx
Fox TLI

W
¥ |- Beam current

Magnetic selection detect
etector

Chamber containing scattering gas

- L E

Figure 12. - Typical scattering chamber apparatus,

|
|
i
|
\
|
I

Let NO =~/; Nofo(gb)dﬁb = gcattering gas density in particles per cubic

centimeter, where f(Vy)dV, is the normalized velocity distribution function
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for the gas. Likewise, let nj =‘/_: n;f;(v;)dV; = ion density in particles
Ve
i
per cubic centimeter, where fi(vi)d?i is the normalized ion velocity distri-
bution function for the beam ions.

The rate at which ions are scattered from the beam per unit volume is
given by

dni(t) -~ — - = T\ 1= -
— = - A A) Nofo(vo)ni(t)fi(vi)u(vo,vi)GT(e,Gm)dvo dv; (64)
0 i

where ¢ = L mu? (m is the ion or atom mass), u 1is the ion-atom relative ve-
locity (fig. 12), and GT(E',QILH> is the total cross section for scattering
through angles greater than GI% in the laboratory system.

If we have a well-collimated monoenergetic ion beam

f’i(-{r)i) = 8(v;)

and
dn: (t)
(:.;JE = - ni(t)Noﬁ fo(?ro)u(—vto,vi)oT (e,@n%)d?fo (65)
Yo
§0
T
n;(T) = ni(O)e@[—l\To -/o- '/_:?O fo(?;o)u(i?o,vi)GT(E,GIIr'l)dVO dtJ (66)

where T 1is the time required for a longitudinal element of the beam to tra-
verse the scattering chamber T = L/v Changlng the variable of integration
from t to x, the length of the scatterlng chamber traversed by the beam ele-
ment, and multiplying through by eAv; to obtain equation (66) in terms of

beam current give
N L
O —> - L -
I(0)ex [—V_1-~/o' -/_;_; fo(vo)u(vo,vi)UT(e,Gm)dvo dx]
0

-pP.L

I

(L)

I(0)e (87)

Il

Wheré p 1is the gas pressure in the scattering chamber, and the collision
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probability P, is defined’ by

P = pok fo(v Ya(To vy ) o (¢,08) a7, ax (68)

This is a generalization of the definition given in reference 3

3 (69)

P.=—go¢ 69
¢ P
where o is the collision cross section.

We now need the geometric relation between 95 and x. From figure 12
we obtain

3
\ -1 W W o1 W R
em = ‘tan L -x L-x 3 (L - ) + - (70)

In order for this approximation to be valid, it is necessary that

X W
l—f>>i-

Since W/L is of the order of 1079 or 107% for a typical scattering chamber
(ref. 1), the approximate form of equation (70) should be accurate over more
than 99.9 percent of the chamber length.

By inserting equations (53), (54), and (70) into (68), we have

L
nN
0 3nV s - X

Pe = pv;L 'Em / /: fO(vO) dvg dx (71)

0 v

0

Integrating with respect to gas atom velocity gives
7y,
70 3V

Pe = 5.0 Vau / Y — (72)

Now integrating over the distance traversed in the chamber yields

Wy [2aVL
Po = —
vy 3mw

(73)

TMaxwell (ref. 37) was the first to point out the lack of dependence of
the velocity integration of eguation (68) on the normalized velocity distribu-
tion function for an inverse fourth power potential; however, Maxwell's poten-
tial was inverse fourth repulsion.
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2

Comparison with equation (69) and using € = % mve,

target atoms, give

which assumes stationary

TV

- L
o= ag (74)

the total cross section for scattering through angles greater than the angular
regsolution of the apparatus.

This would be the expected result of an experimental determination of P,
by the usuval scattering chamber technique. The collision probability is ex-
perimentally determined in the following manner: The ion beam current IL,
which passes through the scattering chamber, is observed for several values of
chamber pressure Po with constant ion beam current and velocity entering the
chamber. A semilogarithmic plot of I;, against py gives a straight line the
slope of which is -P.L (see eq. (67))

Experiments

Cesium. - The total cross section of cesium ions traveling through their
own vapor has been measured for energies between 0.12 and 10.0 electron volts
(ref. 38). The experiment is comparable in principle with the sketch in fig-
ure 12, the difference being that the collision chamber of reference 38 is
curved and placed in a magnetic field. This design defines the ion energy more
precisely than purely electrostatic methods. The value of W/L is about

0.00073 or an average angular resolution 9% of about 0.0015 radian (informa-

tion received in a private communication with R. H. Bullis, R. K. Flavin, and
R. G. Meyerand, Jr. of United Aircraft Corp. ).

The data of reference 38

8000, | ‘ [ are shown in figure 13. Equa-
o0 | o DataofBullls et al. (ref, 38) tion (74) is plotted in the same
) T Ran v figure for w/L = 0.00073.
6000 SR
. i | Inert gases. - An apparatus
50001 similar to the one presented in
° figure 12 was designed for in-
4000 — vestigation of the total colli-

ions in the inert gases (ref.
39). This apparatus had a w/L
| ratio of about 0.0365, that is,
w00l ™ — o an average angular resolution of
N A T A about 0.073 radian. Data from
| references 39 to 41 are pre-
o 1 2 3 4 5 6 1 8 9 W gented in figures 14 and 15 for
lon-atom relative energy, €, ev . :
argon ions in argon gas and neon

Figure 13, - Total scattering cross section, Comparison of Bullis et al, ions in neon gas, respectively.
data (ref, 38) with semiclassical theory for cesium lons in cesium vapor.

|
\
l
|
N ‘ sion cross section of inert gas
|

2000— N ° °

Total cross section, oqle, o, = 0.00151A2
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Figure 14, - Total scattering cross section, Comparison
of data from references 40 and 41 with semiclassical Equation (74) is also shown in these
theory for argon ions in argon gas. figures for comparison.
DISCUSSION

Limitations of the Theory

The cross section theory presented herein contains inaccuracies due to the
semiclassical approach to the scattering problem, the simple choice of inter-
action potential, and the adiabatic assumption and various mathematical approx-
imations made in computing charge exchange probability.

If classical calculations are to be
performed for an atomic scattering event, the
guantum mechaniecal limits on the validity of
this computation must be considered. These
limits are imposed by the uncertainty rela-

tion (ref. 15)

Figure 16, - Uncertainty in impact parameter and
scattering angle, , m Au_t Ab =~ h (75)
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where m 1is the particle mass, up 1its transverse velocity, and b is again
the impact parameter (fig. 16). The symbol A indicates uncertainty in the
quantity which follows it. 1In order for a classical treatment to be valid, we
must have

VAN
o> oo - 2

b >> Ab

Using equation (75) and € = % mu?, we find that the classical treatment fails

for scattering angles less than 6%, where

R (76)

~/2me b

The true total elastic scattering cross section should actually be smaller
than the classically calculated value obtained from equation (53) for scatter-
ing angles less than 6%. The classical value becomes infinite as O, ap-
proaches zero. It 1s well known, however, that the quantum mechanical calcula-
tion gives finite cross sections as zero scattering angle is approached, if the
scattering potential falls off more rapidly than 1/r? (ref. 42). The depen-
dence of 6% on energy is shown in figure 17 for cesium, where it may be com-
pared with eé. Note that, over a wide range of scattering angle for which

classical mechanics fails, the charge exchange probability is zero; that is,

108 =g
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o
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107 10 107 adians ° 10 10 lon-atom relative energy, €, ev
Figure 17, - Critical particle scatt.ering angle e(': and lower limit Figure 18, - Comparison of total scattering cross section oyle,e)
for valid classical calculation o for cesium, with spiraling cross section ole),
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T

6! > 6%
C

Hence, little error should be introduced in figures 10 and 11 (p. 17) by the
classical orbit assumption.

At very large elastic scattering angle, which implies close approach of
the interacting nuclei, the assumption of pure polarization interaction is a
poor one. Under these conditions, orbiting or spiraling may occur, and a more
elaborate potential function including repulsive forces must be considered.
The main interest, however, is not in large particle scattering angles where,
as can be seen in figure 8 (p. 14), the differential scattering cross section
1s relatively small.

In the case of cesium, only at low thermal energy is the spiraling cross
section significant. A comparison of the cesium spiraling cross section ob-
tained from equations (42) and (43) and the total scattering cross section ob-
tained from equations (61) and (63) and an extrapolation of cesium charge ex-
change cross section data (ref. 19) is made in figure 18. If the collision
energy is greater than 0.025 electron volt, the spiraling cross section is less
than 25 percent of the total scattering cross section. This percentage de-
creases with increasing energy.

The use of equation (19) to obtain the charge exchange probability is an
approximation to the more accurate form of the probability sketched in fig-
ure 4 (p. 9). This simplification was made following the method of refer-
ence 25. The use of the exponential tail instead of chopping the probability
at b, would be expected to round the cutoff peak slightly at 6, and smooth
the discontinuity in o.(e,0) at 6].

The calculation of charge exchange probability required the use of the ap-
proximate expressions

. m ux
e B 9«1 (12)
and :
2
L
e ~ 1 (13)

These expressions were shown, in the discussion of resonance charge exchange
probability, to be equivalent to the condition

meuD

T << 1l

The physical meaning of this condition is clear if we consider the angular mo-
mentum relation for an electron orbiting with velocity v in a Bohr orbit of

e
radius Te
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m very = n (77)

where n 1is the principal quantum number. If we consider a hydrogen-like atom
in the ground state n =1 and if the range of the interaction D is of the
order of atomic dimensions so that D/re = 1, we see that

— e—— Y ——

so the condition for the approximate equations (12) and (13) to hold is

v
e

that is, the relative velocity of the colliding nuclei must be much less than
the velocity of the orbiting electron that is to be exchanged. This is the so-
called adiabatic approximation. Since for the first Bohr orbit

el

< _ _ 7
Ve = W = 3.5%10" cm/sec

the adiabatic condition for a cesium ilon-atom collision requires that the rela-
tive kinetic energy be less than 85 kiloelectronvolt.

We see from the previous discussion that the validity of this analysis is
dependent on the following three conditions:

(1) % < g, < 6,
(2) o5 << op
(3) ufvy <1

Condition (1) presupposes 6% < Gé, which is not necessarily true at high
energy. This condition rather than condition (3) often establishes the upper
1imit on the energy range. Cesium, which is used as an example of interest, is
limited not by the 85 kiloelectronvolt adiabatic limitation of condition (3),
but by condition (1) (see fig. 17), where 6% = 6} for a collision energy of
about 1000 electron volts.

Comparison of Thecry with Experiment

There is only a limited quantity of data in the open literature that meets
the three conditions discussed, and these data are only in the form of total
cross section measurements; there are no data on differential scattering cross
sections of low energy ions in their own gas. It would seem that cesium is the
only element whose unique combination of properties (large mass, large polariz-
ability, and interesting applications requiring low energy collisions) make it
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suitable for application of the theory at energies between 0.025 and 1000 elec-
tron volts.

The observations of total cesium scattering cross sections made by Bullis,
et al. (ref. 38) have been compared with the theory in figure 13. While the
agreement might be termed acceptable, it must be admitted that the data do tend
to fall above the theoretical curve. This is particularly true in the low en-
ergy range, that is, below 1 electron volt. The ‘experimenters have, however,
been quick to point out (information received in a private communication with
R. H. Bullis, R. K. Flavin, and R. G. Meyerand, Jr. of United Aircraft Corp.)
the difficulties of making measurements in this low energy range and that these
are only preliminary data. Their low energy ion beam tends to space-charge
spread or be deflected by stray electric fields arising from charges on insula-
tors and field penetration of the scattering chamber. The low intensity ion
beam signal requires a nude electron multiplier type detector whose gain tends
to drift in the low pressure cesium enviromment. Any of these effects could
give an erroneously high value of cross section. A noteworthy attempt to over-
come these difficulties was made by fabricating the entire collision chamber
including the end slits from a single piece of electrolytically deposited cop-
per. Furthermore, the end slits were contoured to minimize field penetration.
Extensive cold trapping and pumping were used to reduce the background cesium
pressure in the region of the electron multiplier. Still one must remember,
when comparing the experimental data with theory, that there exists the possi-
bility of a systematic error that gives high values of cross section.

It is also interesting to compare the total scattering cross section pre-
dicted by equatlon (74) with the observations from reference 40 for argon ions
and from reference 41 for neon ions in their parent gases (figs. 14 and 15,
respectively). The theory is not applicable to these data, since Oy = 0.073
for the apparatus of reference 39 and 6, < 0.02 for collision energies
greater than 1.0 electron volt for both neon and argon. It is also to be ex-
pected that the theory would not explain inert gas interactions, since
hydrogen-like wave functions were used to obtain the theoretical charge ex-
change probability.

The approach of the experimental results to the theory at low energy is
noteworthy. The true cross section is expected to be larger than the predic-
tion of equation (74) when Oy > 6%, because any charge exchange interaction
that results in particle scattering angles between 6, and 6, has not been
included in the calculation. From this standpoint, the data in figures 12, 14,
and 15 are in fair agreement with the theory.

CONCLUSIONS

The semiclassical calculation of differential charge exchange cross sec-
tion is only an approximate method; however, several interesting features of
the results are expected to be walid. These features would be exhibited not
only for the cesium resonance interaction, for which numerical values have been
given, but for any resonance charge exchange interaction that satisfies the
three conditions:
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(1) o* <6, < 64
(2) oy << op
(3) u<vg

These conditions can be satisfied for cesium if the ion-atom relative energy of
collision is between 0.025 and 1000 electron volts.

As the calculations for cesium have shown, the differential charge ex-
change cross section has a cutoff close to, but not at, an apparent scattering
angle of 180°. The maximum value of the cross section occurs at the cutoff
angle. As the collision energy increases, the cutoff angle approaches 180° and
the cross section maximum increases. The values of the cutoff angle and cross
section maximum may be approximated by the expressions '

2
6o =~ Ir[l - StV I (48b)
8e(A - B 1n €)

and

2 € 6
o.(e,6,) = IV (A -B1n €) (49)

respectively.

The total cross section for scattering through angles greater than Om
was found by integration to be approximately given by

v
OT(G,em) =~ 7 E (53)

subject to the condition &, < Gé and the corresponding collision probability
expected as the result of a scattering chamber type experiment is

N .
c ~ pvy 3mw (73)

P

The expressions
oq(e) = ople,;07)
and

og(e) = 20,(¢) (83)

have been shown to be valid even though the differential cross section vanishes
at an apparent scattering angle of 180°.

Lewis Research Center
National Aeronautics and Space Administration

Cleveland, Ohio, June 24, 1964
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APPENDIX - INTEGRATION OF CHARGE EXCHANGE PROBABILITY
EXPRESSION FOR HYDROGEN-LIKE ATOMS

It was indicated in the main text that the charge exchange probability may
be given by
2

[20]
Py = %—/ /cpo(r)UA(r')llfo(r’)dT at (A1)
~c0 all space
where
z
3 -=r
Z
(PO = —5 € a (Az)
na
3 2
Z a
Volr') = —xz e (43)
g
el
Ua(r') = = ;—,— (A4)
The integral over spatial coordinates is then
z
3 -= (rir')/ 2
I=- Z—g e (—e—,>dT (a5)
na r

all space

Referring to the coordinate system in figure 3 with X taken as the angle
=2 -
between R and r shows that

and

r' = \/R2+r2 - 2rR cos X

Then equation (AS5) becomes

2nrPe € : sin X dx lar (A6)
VRZ + r2 - 2rR cos X

-2 r -2 R2+r2-2rR cos X
<3 2) a a
T = - z"e
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Performing the integration over X yields

[ee)

A Z 4
25e2 218 “a r _(R+r)§ '-EIT_RI
I = = = re e -e dr
na
0
which can be written as
5 2 _BE _ZZr _BE BE ® _er
I = <222e > e a re & dr - e & r dr - ea re a
a“R
0 0 R

Now integrating over r gives

The charge exchange probability, equation (Al), is now

” _R(t)z
. 750 ? ,:l+zR§t)]e a

dat

a

~-00

Referring to figure 3, we see that

R(t) = YES + w2

So we now need the integral

[>e]
- ZYRE+u2t?
a 0

= z 2 242
Jd = (l + 2 RO + u“t )e dt

—-00
By noting the symmetry of the integrand, equation (A9) can be written

[ve]

., —éz-'/f%ﬂxztz
J=2 l+gVRg+u2t2e at
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Making the substitution

gives

Z “a x x dx
(l + g X)e

. ‘[7?___75
x® - R
0
Ro

Integrating by parts and making the substitutions ¢ = X/RO and p = Roz/a, we
obtain '

oy
Il
SEIN

u

2 [20]
2 -t
1

From reference 44 we obtain

f e-PE(e2 - 1)271/2 g (A11)
1

Kn(p) = ;Z;—:—ij (%)n

where Kn(p) is the modified Bessel function of the second kind. Differenti-
ating equation (A11l) with respect to p and using

dKy ) n
—dip—- = —Kn_l(p) = B Kn(p)
give
® 1
I'in + = n
£(e2 - l)n-l/Ze-pg at = <__2.2(-§-) [Kn_l(p) + 2 -Ilen(p)] (A12)

) )

which, for n =1, yields

/ £(e2 - l)l/Ze-Og de = %[ ole) + % Kl(p)] (A13)
1

Substituting equation (A13) into equation (Al0) gives
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2
J = %RO p[Ko(p) + % Kl(p)] (Al4)

Now the charge exchange probability, equation (A8), becomes

2

Py = (A15)

2
2—%—?— oo (p) + 2Kl(p):|

For large p we may use the approximate expressions (ref. 33)

Ko(p) = Ky(p) = Y P (16)

so that to this degree of approximation, equation (AlS) may be written as

2
2 .
- (& 2 2gm2p
Py = (ﬁu) 2nzp(p + 2)“e (AL17)
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